Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38469716

RESUMO

RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.


Assuntos
Endorribonucleases , Synechocystis , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA , Ribonucleases , Escherichia coli/genética , Escherichia coli/metabolismo , Synechocystis/genética , RNA de Transferência
2.
Front Microbiol ; 14: 1112307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876071

RESUMO

Synthetic biology approaches toward the development of cyanobacterial producer strains require the availability of appropriate sets of plasmid vectors. A factor for the industrial usefulness of such strains is their robustness against pathogens, such as bacteriophages infecting cyanobacteria. Therefore, it is of great interest to understand the native plasmid replication systems and the CRISPR-Cas based defense mechanisms already present in cyanobacteria. In the model cyanobacterium Synechocystis sp. PCC 6803, four large and three smaller plasmids exist. The ~100 kb plasmid pSYSA is specialized in defense functions by encoding all three CRISPR-Cas systems and several toxin-antitoxin systems. The expression of genes located on pSYSA depends on the plasmid copy number in the cell. The pSYSA copy number is positively correlated with the expression level of the endoribonuclease E. As molecular basis for this correlation we identified the RNase E-mediated cleavage within the pSYSA-encoded ssr7036 transcript. Together with a cis-encoded abundant antisense RNA (asRNA1), this mechanism resembles the control of ColE1-type plasmid replication by two overlapping RNAs, RNA I and II. In the ColE1 mechanism, two non-coding RNAs interact, supported by the small protein Rop, which is encoded separately. In contrast, in pSYSA the similar-sized protein Ssr7036 is encoded within one of the interacting RNAs and it is this mRNA that likely primes pSYSA replication. Essential for plasmid replication is furthermore the downstream encoded protein Slr7037 featuring primase and helicase domains. Deletion of slr7037 led to the integration of pSYSA into the chromosome or the other large plasmid pSYSX. Moreover, the presence of slr7037 was required for successful replication of a pSYSA-derived vector in another model cyanobacterium, Synechococcus elongatus PCC 7942. Therefore, we annotated the protein encoded by slr7037 as Cyanobacterial Rep protein A1 (CyRepA1). Our findings open new perspectives on the development of shuttle vectors for genetic engineering of cyanobacteria and of modulating the activity of the entire CRISPR-Cas apparatus in Synechocystis sp. PCC 6803.

3.
Microorganisms ; 10(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422315

RESUMO

The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.

4.
Nucleic Acids Res ; 49(22): 13075-13091, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871439

RESUMO

Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and the spontaneously occurred V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the -3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified mRNAs likely regulated jointly by RNase E and an sRNA and potential 3' end-derived sRNAs. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Endorribonucleases/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cianobactérias/enzimologia , Endorribonucleases/metabolismo , Hidrólise , Mutação Puntual , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA-Seq/métodos , Homologia de Sequência de Aminoácidos , Espectrofotometria/métodos , Especificidade por Substrato , Synechocystis/enzimologia , Synechocystis/genética
5.
J Exp Bot ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499142

RESUMO

RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.

6.
Plant Cell ; 33(2): 358-380, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793852

RESUMO

Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , RNA Bacteriano/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Modelos Biológicos , Mutação/genética , Óperon/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Synechocystis/genética
7.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509926

RESUMO

Phycobilisomes are the major pigment-protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin ß-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fenótipo , Fotossíntese , Filogenia , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Transcriptoma/genética
8.
Front Microbiol ; 11: 1707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793165

RESUMO

Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.

9.
ISME J ; 14(8): 1955-1965, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346084

RESUMO

Small regulatory RNAs and antisense RNAs play important roles in the regulation of gene expression in bacteria but are underexplored, especially in natural populations. While environmentally relevant microbes often are not amenable to genetic manipulation or cannot be cultivated in the laboratory, extensive metagenomic and metatranscriptomic datasets for these organisms might be available. Hence, dedicated workflows for specific analyses are needed to fully benefit from this information. Here, we identified abundant sRNAs from oceanic environmental populations of the ecologically important primary producer Prochlorococcus starting from a metatranscriptomic differential RNA-Seq (mdRNA-Seq) dataset. We tracked their homologs in laboratory isolates, and we provide a framework for their further detailed characterization. Several of the experimentally validated sRNAs responded to ecologically relevant changes in cultivation conditions. The expression of the here newly discovered sRNA Yfr28 was highly stimulated in low-nitrogen conditions. Its predicted top targets include mRNAs encoding cell division proteins, a sigma factor, and several enzymes and transporters, suggesting a pivotal role of Yfr28 in the coordination of primary metabolism and cell division. A cis-encoded antisense RNA was identified as a possible positive regulator of atpF encoding subunit b' of the ATP synthase complex. The presented workflow will also be useful for other environmentally relevant microorganisms for which experimental validation abilities are frequently limiting although there is wealth of sequence information available.


Assuntos
Pequeno RNA não Traduzido , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , RNA Mensageiro
10.
J Biol Chem ; 295(19): 6372-6386, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32209657

RESUMO

The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.


Assuntos
Óperon/genética , RNA Helicases/metabolismo , RNA não Traduzido/metabolismo , Synechocystis/enzimologia , Synechocystis/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica
11.
FEMS Microbiol Rev ; 44(2): 232-252, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077939

RESUMO

Marine cyanobacteria of the genus Prochlorococcus thrive in high cell numbers throughout the euphotic zones of the world's subtropical and tropical oligotrophic oceans, making them some of the most ecologically relevant photosynthetic microorganisms on Earth. The ecological success of these free-living phototrophs suggests that they are equipped with a regulatory system competent to address many different stress situations. However, Prochlorococcus genomes are compact and streamlined, with the majority encoding only five different sigma factors, five to six two-component systems and eight types of other transcriptional regulators. Here, we summarize the existing information about the functions of these protein regulators, about transcriptomic responses to defined stress conditions, and discuss the current knowledge about riboswitches, RNA-based regulation and the roles of certain metabolites as co-regulators. We focus on the best-studied isolate, Prochlorococcus MED4, but extend to other strains and ecotypes when appropriate, and we include some information gained from metagenomic and metatranscriptomic analyses.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Prochlorococcus/genética , Prochlorococcus/metabolismo , Oceanos e Mares , Estresse Fisiológico/genética
12.
Sci Rep ; 9(1): 14331, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586076

RESUMO

The sRNA Yfr1 and members of the Yfr2 sRNA family are almost universally present within cyanobacteria. The conserved motifs of these sRNAs are nearly complementary to each other, suggesting their ability to participate in crosstalk. The conserved motif of Yfr1 is shared by members of the Yfr10 sRNA family, members of which are otherwise less conserved in sequence, structure, and synteny compared to Yfr1. The different structural properties enable the discrimination of unique targets of Yfr1 and Yfr10. Unlike most studied regulatory sRNAs, Yfr1 gene expression only slightly changes under the tested stress conditions and is present at high levels at all times. In contrast, cellular levels of Yfr10 increase during the course of acclimation to darkness, and levels of Yfr2 increase when cells are shifted to high light or nitrogen limitation conditions. In this study, we investigated the targetomes of Yfr2, Yfr1, and Yfr10 in Prochlorococcus MED4, establishing CRAFD-Seq as a new method for identifying direct targets of these sRNAs that is applicable to all bacteria, including those that are not amenable to genetic modification. The results suggest that these sRNAs are integrated within a regulatory network of unprecedented complexity in the adjustment of carbon and nitrogen-related primary metabolism.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Prochlorococcus/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Aclimatação/genética , Sequência de Bases , Sequência Conservada , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
13.
DNA Res ; 25(5): 489-497, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901694

RESUMO

Prochlorococcus is a marine picocyanobacterium with a streamlined genome that is adapted to different ecological niches in the oligotrophic oceans. There are currently >20 regulatory small RNAs (sRNAs) that have been identified in the model strain Prochlorococcus MED4. While most of these sRNAs are ecotype-specific, sRNA homologs of Yfr1 and of the Yfr2 family are widely found throughout the cyanobacterial phylum. Although they were identified 13 yrs ago, the functions of Yfr1 and Yfr2 have remained unknown. We observed a strong induction of two Yfr2 sRNA homologs of Prochlorococcus MED4 during high light stress and nitrogen starvation. Several Prochlorococcus and marine Synechococcus yfr2 promoter regions contain a conserved motif we named CGRE1 (cyanobacterial GntR family transcriptional regulator responsive element 1). Using the conserved promoter region as bait in a DNA affinity pull-down assay we identified the GntR family transcriptional regulator PMM1637 as a binding partner. Similar to Yfr2, homologs of PMM1637 are universally and exclusively found in cyanobacteria. We suggest that PMM1637 governs the induction of gene expression of Yfr2 homologs containing CGRE1 in their promoters under nitrogen-depleted and high-light stress conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Família Multigênica , Prochlorococcus/genética , Prochlorococcus/metabolismo , Pequeno RNA não Traduzido/genética , Transcrição Gênica , Sequência de Bases , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Ligação Proteica
14.
BMC Microbiol ; 16(1): 285, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894276

RESUMO

BACKGROUND: Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (µ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. RESULTS: Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective µ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6 (nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. CONCLUSIONS: The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cianobactérias/metabolismo , Proteoma/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Bactérias/química , Sequência de Bases , Cianobactérias/enzimologia , Cianobactérias/genética , Escherichia coli/genética , Genes Bacterianos , Mutação , Nitrogênio/metabolismo , Fases de Leitura Aberta , Fotossíntese , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Mensageiro/genética , Alinhamento de Sequência , Synechocystis/genética , Synechocystis/metabolismo , Transcrição Gênica , Transcriptoma
15.
Genetics ; 203(3): 1149-59, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27182944

RESUMO

Previous studies have shown that infection of Prochlorococcus MED4 by the cyanophage P-SSP7 leads to increased transcript levels of host endoribonuclease (RNase) E. However, it has remained enigmatic whether this is part of a host defense mechanism to degrade phage messenger RNA (mRNA) or whether this single-strand RNA-specific RNase is utilized by the phage. Here we describe a hitherto unknown means through which this cyanophage increases expression of RNase E during phage infection and concomitantly protects its own RNA from degradation. We identified two functionally different RNase E mRNA variants, one of which is significantly induced during phage infection. This transcript lacks the 5' UTR, is considerably more stable than the other transcript, and is likely responsible for increased RNase E protein levels during infection. Furthermore, selective enrichment and in vivo analysis of double-stranded RNA (dsRNA) during infection revealed that phage antisense RNAs (asRNAs) sequester complementary mRNAs to form dsRNAs, such that the phage protein-coding transcriptome is nearly completely covered by asRNAs. In contrast, the host protein-coding transcriptome is only partially covered by asRNAs. These data suggest that P-SSP7 orchestrates degradation of host RNA by increasing RNase E expression while masking its own transcriptome from RNase E degradation in dsRNA complexes. We propose that this combination of strategies contributes significantly to phage progeny production.


Assuntos
Bacteriófagos/genética , Endorribonucleases/genética , Prochlorococcus/genética , Transcriptoma/genética , Bacteriófagos/patogenicidade , Endorribonucleases/biossíntese , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Prochlorococcus/virologia , Estabilidade de RNA/genética , RNA Antissenso/biossíntese , RNA Antissenso/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética
16.
ISME J ; 10(6): 1437-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26623542

RESUMO

Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.


Assuntos
Bacteriófagos/genética , Especificidade de Hospedeiro , Metagenômica , Prochlorococcus/virologia , Synechococcus/virologia , Transcriptoma , Bacteriófagos/fisiologia , Perfilação da Expressão Gênica , Oceanos e Mares , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Prochlorococcus/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Synechococcus/genética
17.
Front Genet ; 6: 43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750651

RESUMO

The visualization of massive datasets, such as those resulting from comparative metatranscriptome analyses or the analysis of microbial population structures using ribosomal RNA sequences, is a challenging task. We developed a new method called CoVennTree (Comparative weighted Venn Tree) that simultaneously compares up to three multifarious datasets by aggregating and propagating information from the bottom to the top level and produces a graphical output in Cytoscape. With the introduction of weighted Venn structures, the contents and relationships of various datasets can be correlated and simultaneously aggregated without losing information. We demonstrate the suitability of this approach using a dataset of 16S rDNA sequences obtained from microbial populations at three different depths of the Gulf of Aqaba in the Red Sea. CoVennTree has been integrated into the Galaxy ToolShed and can be directly downloaded and integrated into the user instance.

18.
Mar Genomics ; 19: 5-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450165

RESUMO

Regulatory RNAs play a central role in the regulation of gene expression and can act on several regulatory levels from transcriptional initiation and RNA processing to the control of initiation of translation and RNA stability. One class of these molecules is non-coding (nc)RNAs in bacteria that typically lack protein-coding potential, range in size between 50 and 500nt and originate from intergenic regions. Common methods for the identification of these RNAs are either based on computational predictions, or on transcriptomic analyses of laboratory cultures, whereas very little is known about ncRNAs in environmental microbial populations. Here, we have combined a metatranscriptomics approach with a selective enrichment protocol for ncRNAs. The primary objective of this study was the identification of novel, environmentally relevant ncRNAs focusing on the cyanobacterium Prochlorococcus, which was one of the dominant microorganisms of the marine community of the Gulf of Aqaba when samples were taken.


Assuntos
Biota , Plâncton/genética , Prochlorococcus/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Transcriptoma/genética , Oceano Índico , Metagenômica/métodos , Plâncton/metabolismo , Prochlorococcus/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-25022427

RESUMO

In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

20.
ISME J ; 8(10): 2056-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24739626

RESUMO

Prochlorococcus is a genus of abundant and ecologically important marine cyanobacteria. Here, we present a comprehensive comparison of the structure and composition of the transcriptomes of two Prochlorococcus strains, which, despite their similarities, have adapted their gene pool to specific environmental constraints. We present genome-wide maps of transcriptional start sites (TSS) for both organisms, which are representatives of the two most diverse clades within the two major ecotypes adapted to high- and low-light conditions, respectively. Our data suggest antisense transcription for three-quarters of all genes, which is substantially more than that observed in other bacteria. We discovered hundreds of TSS within genes, most notably within 16 of the 29 prochlorosin genes, in strain MIT9313. A direct comparison revealed very little conservation in the location of TSS and the nature of non-coding transcripts between both strains. We detected extremely short 5' untranslated regions with a median length of only 27 and 29 nt for MED4 and MIT9313, respectively, and for 8% of all protein-coding genes the median distance to the start codon is only 10 nt or even shorter. These findings and the absence of an obvious Shine-Dalgarno motif suggest that leaderless translation and ribosomal protein S1-dependent translation constitute alternative mechanisms for translation initiation in Prochlorococcus. We conclude that genome-wide antisense transcription is a major component of the transcriptional output from these relatively small genomes and that a hitherto unrecognized high degree of complexity and variability of gene expression exists in their transcriptional architecture.


Assuntos
Prochlorococcus/genética , Transcriptoma , Regiões 5' não Traduzidas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Luz , Fotossíntese/genética , Prochlorococcus/metabolismo , RNA Antissenso/química , RNA não Traduzido/análise , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...